- REG x : input | 0 < input
- VAR I : index
- VAR J : index
- VAR X : input value
- VAR Y : accumulator
- VAR Z : work memory
- VAR 01~21 : work memory (continued fraction)
- FLAG0 : terminate approximation
- LASTx : input value
- REG t : input value
- REG z : error
- REG y : numerator
- REG x : denominator
Fractional approximation
using continued fraction
recompose and
calculate error
F001 LBL F LN=208
F002 ALL
F003 CF 0
F004 ABS
F005 STO X
F006 STO Y
F007 1.021
F008 STO I
F009 CLχ
F010 χ<>y
F011 IP
F012 STO (I)
F013 χ≠0
F014 XEQ F034
F015 RCL Y
F016 RCL-(I)
F017 χ=0?
F018 SF 0
F019 FS? 0
F020 GTO F026
F021 1/χ
F022 STO Y
F023 ISG I
F024 GTO F011
F025 CF 0
F026 R↓
F027 RCL X
F028 ABS
F029 CLχ
F030 LASTχ
F031 R↓
F032 RTN
F033 RCL I
F034 IP
F035 STO J
F036 0
F037 1
F038 ENTER
F039 ENTER
F040 RCL(J)
F041 ×
F042 R↑
F043 +
F044 DSE J
F045 GTO F039
F046 ABS
F047 χ<>y
F048 ENTER
F049 ENTER
F050 LASTχ
F051 ÷
F052 RCL× X
F053 1
F054 -
F055 χ<> Z
F056 ABS
F057 5E-12
F058 χ≥y
F059 SF 0
F060 CLχ
F061 RCL Z
F062 R↑
F063 R↑
F064 PSE
F065 RTN
Examplesπ XEQ F001
y: 3 22 333 355 103,993 104,348 208,341 312,689 833,719 x: 1 7 106 113 33,102 33,215 66,317 99,532 265,381
Franctional approximation of π
Fractional approximation program for the HP-15c
Fractional approximation program for the HP-32sII
Fractional approximation program for the HP-42s
Find the nearest fraction in the E24 numbers